ISSN 0083-7903, 77 (Print) ISSN 2538-1016; 77 (Online)

Distribution and Morphology of Chatham Rise Phosphorites

by

DAVID W. PASHO

NEW ZEALAND OCEANOGRAPHIC INSTITUTE MEMOIR 77

NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

Distribution and Morphology of Chatham Rise Phosphorites

by

DAVID W. PASHO

Resource Management and Conservation Branch, Department of Energy, Mines, and Resources, Ottawa, Canada.

New Zealand Oceanographic Institute Memoir 77

Wellington

1976

Citation according to "World List of Scientific Periodicals" (4th edn) Mem. N.Z. oceanogr. Inst. 77

ISSN 0083 - 7903

Received for publication : September 1974

Edited by R.W. Poole, Science Information Division, DSIR, and R.J. Wanoa, N.Z. Oceanographic Institute, DSIR. Varityping by Rose-Marie Thompson

C Crown Copyright 1976

A.R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1976

CONTENTS

						Page
Abstract	16		14		**	5
Introduction	200	**		**		5
Previous Work	*	0.985		222.5	~	5
Techniques					~	6
Geologic Setting		-		**	-72	7
Topography	ц.	(San)	**		**	7
Lithology	14 C	644	**			8
Sediments		1.00	32	344.0		11
Structure	**	2.44/2		8444	- 24	12
Geologic History				· •• :	54	12
Description of the Phosphor	rites		**		24	13
External Character				(1944)	**	13
Macroscopic Examinati	on of Nod	ule Interior		HC:		14
Microscopic Examination	on of Nodu	le Interior		-	**	15
Chemical Composition		44				18
Characteristics of Dist	ribution a	nd Associati	ons	44	**	19
Discussion and Conclusio	ns	141	22		34	20
Depositional Setting	**	04402			44	20
Phosphatisation	11	2.442	44			20
Subsequent History			**	1.244-1	28	20
Acknowledgments	14	(144)	1946	2.22	175	21
References			200		**	22
Appendix I : Chatham Rise	Stations,	GMI Cruise I		-	1	23
Appendix II : Chatham Rise	Stations,	GMI Cruise	II	22	14	24
Appendix III : Listing of Av	ailable P	O ₅ Analyse	s on Phos	phorite		
Nodules	from Chat	ham Rise	**	1663	**	26

FIGURES

1.	Chatham Rise : bathymetry and station locat	tions		6	6 & 7
2.	Chatham Rise : lithology		-	8	8&9
3.	Chatham Rise : phosphorite locations			10	& 11
4.	Bathymetric profiles on the Chatham Rise	22	**		12
5.	Typical Chatham Rise phosphorite nodules		++ -	-	13
6.	Relationship of specific gravity and size in p	phosphor	ite nodules		14
7.	Cross-section of phosphorite nodule			04	14

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

FIGURES - Continued

8.	Photomicrograph of phosphorite nodule composed of foraminifera tests		15
9.	Photomicrograph of phosphorite nodule containing few foraminifera tes	ts	15
10.	Photomicrograph of phosphorite nodule illustrating collophane replacing chalk		15
11.	Photomicrograph of phosphorite nodule illustrating collophane infilled fracture crosscutting glauconite rim	383	16
12.	Photomicrograph of phosphorite nodule showing the transition from glauconitised rim to collophane replacement zone	-	16
13.	Photomicrograph of phosphorite nodule showing a concentration of opaque material between glauconite rim and collophane zone		17
14.	Photomicrograph of phosphorite nodule showing opaque material	20	17
15.	Histogram of the P_2O_5 content in phosphorite nodules representing		
	51 stations		18
16.	Diagrammatic representation of two total sediment samples	44.2	20

TABLES

1.	Relative frequency of mineral g	rains in the	insoluble re	esidue of		
	phosphorite nodules		1222		122	18
2.	Collected partial analyses of pl	2.44	19			
3.	P_2O_5 content of various size pl	nosphorite r	nodules	5		19
4.	Comparison of $P_2 O_5$ content in	nodules wi	th different p	ercentages		
	of foraminifera	100			1995	19

÷

Distribution and Morphology of Chatham Rise Phosphorites

by

David W. Pasho

Resource Management and Conservation Branch, Department of Energy, Mines, and Resources, Ottawa, Canada.

ABSTRACT

This study is based on an extensive programme of sampling for phosphorite nodules, undertaken by Global Marine Inc., on the Chatham Rise during 1967 and 1968.

The data resulting from this survey substantially increase knowledge of the general geology and geomorphology of Chatham Rise, and reconstructions are presented of the structure, stratigraphy and geological history of the region in the light of the new evidence.

The nature of the phosphorite nodules has been studied in considerable detail, and fresh information on the distribution and on the complex mineralogy and geochemistry of the phosphorite is discussed. Glauconite commonly accompanies the phosphorite on the Chatham Rise as discrete sandsize grains and as thin coatings on nodules, and this association is described in some detail.

Finally, an interpretation is given of the evolution of the Chatham Rise phosphorite nodules by phosphatisation of late Miocene foraminiferal oozes, followed by uplift, fragmentation and weathering under subaerial conditions before resubmergence.

INTRODUCTION

During 1967 and 1968, Global Marine Inc. conducted an extensive exploration programme on the Chatham Rise. The work was undertaken in order to determine whether phosphorites, known to occur on the Rise, represented a potential phosphate ore deposit. Approximately 329 bottom samples were taken during the course of this investigation.

The primary purpose of this study is to describe the phosphorites of the Chatham Rise and determine their origin. A secondary objective is to discuss the geology of the Rise in the light of the new data contributed by the sampling. PREVIOUS WORK

The occurrence of phosphorite nodules in a sample taken on the Chatham Rise was reported by Reed & Hornibrook (1952) who attributed their presence to erosional removal of material except for that "preserved by phosphatisation". Norris (1964) describes nodules from various regions of the Rise and takes exception to the erosional theory of Reed & Hornibrook, although not specifying an alternative. Two papers have shown the nodules to have possible economic value (Summerhayes 1967; Watters 1968) and a third, while dealing

New Zealand Oceanographic Institute Memoir 77, 1976 ISSN 0088 - 7908

Fig. 1. Chatham Rise, New Zealand : bathymetry and station locations.

6

with the same theme, adds new data resulting from exploration of the deposits by Global Marine Inc. (Buckenham *et al.* 1971).

TECHNIQUES

Bottom Sampling: All the samples were taken with a 45cm diameter pipe dredge. As the Chatham Rise nodules did not approach the dredge diameter in size, the samples are considered to be representative with respect to size, unlike those reported by Glasby & Singleton (1975) who used a smaller diameter pipe dredge. Positions were obtained by celestial navigation. Sample stations are listed in Appendix I and II, and plotted on Fig. 1.

Sample Treatment: Duplicates of all samples taken on the Chatham Rise were given to the author by Global Marine Incorporated. Sediments and rocks from each station were logged and described.

Cross-sections of 2 or 3 nodules from each of 20 different sample stations that yielded phosphorite

were prepared and studied. Approximately 43 thin sections were made from 40 nodules. At least one nodule was taken from each of the stations.

Phosphate Analyses: Quantitative analyses for P_2O_5 were performed on 20 samples from the Chatham Rise. Unless a specific region of the interior was selected, analyses were performed on splits of crushed whole nodule cross-sections. These were ground to minus 120 mesh and oven dried for 24 hours at 110°C. Samples were prepared by fusing the powder with La₂O₃ and Li₂B₄O₇, and pressing the ground mixture into sample wafers. Analyses were performed on a Norelco X-ray fluorescence unit.

Microscopic Techniques: The mineralogy of clastics in Chatham Rise phosphorites was ascertained by digesting the nodules in HCl and performing a grain count on the clastics in the residue.

Relative percentages of various constituents in the nodules were determined by modal analyses of thin sections. Grain size distributions were arrived at by point-counting grains within sieve intervals.

GEOLOGIC SETTING

TOPOGRAPHY

The Chatham Rise is a broad submarine high extending over 500 nautical miles from Banks Peninsula on the South Island of New Zealand to a short distance beyond the Chatham Islands (Fig. 1). Averaging approximately 60 nautical miles in width, the Rise crest covers over 40,000 square miles or twothirds the area of the South Island. Outlined by the 500 m contour, the crest of the Rise is separated from the shelf off Banks Peninsula by a narrow saddle just over 570 m deep. The northern slope of the Rise extends to 2,500 m and is notably steeper than slopes bounding it on the south and east which deepen gradually to approximately 4,000 m. Four banks and the Chatham Islands form the major topographical features atop the Rise.

Memoo Bank, described by Fleming & Reed (1951), is the westernmost bank and comes to within 56 m of the surface. It is roughly dome-shaped, being somewhat elongated along a north-east/south-west axis. The 200m contour approximately marks the transition from a relatively flat summit to steep slopes on the north, south and west. Fleming & Reed (1951) suggest that the valley-like channels, dissected plateaus, and cliff structures found on the bank result from subaerial processes. Notably, the valley-like channels with branching sinuous courses radiating from the summit region can be traced down slope to about 100 m, a depth consistent with the maximum reduction in sea level during the Pleistocene (Curray 1969). The gentle side slopes of the valleys, which contrast with the very steep slopes often found in true submarine canyons do not point to formation by submarine processes.

Protruding from the southern slope of the Rise is Veryan Bank, a relatively small steep-sided feature with a flat summit at 40m (Brodie 1964). Flat summit, shape and recoveries of volcanic rocks lead Brodie to suggest it is a truncated volcanic cone.

Fig. 2. The Chatham Rise, New Zealand : lithology.

Reserve Bank is elongated east-west, parallel to the axis of the Rise. Separated from Mernoo Bank on the west by a north-south saddle up to 385m deep, it shallows to the east reaching a depth of under 200m. Further east it narrows and deepens.

Reserve and Matheson Banks are separated by a broad deep saddle averaging over 400 m in depth. From a regional depth of 400 m, Matheson Bank rises abruptly from the north and south in a succession of levels to depths under 200 m (Fig. 4B in Cullen 1965). The Bank trends in a north-west/south-east direction, terminating somewhat abruptly on the east and deepening into a ridge on the west.

The Chatham Islands are emergent portions of a broad east-west trending arch beginning about $179^{\circ}W$ and extending eastward past the Islands. Chotham Island is the largest land mass of the group. The second largest island is Pitt Island to the south-east of Chatham Island. Several submarine benches have been reported around the Chatham Islands (Brodie *in* Knox 1957). The two deepest are at 293 m and 119 m. The former is believed by Brodie to be early Pleisto-

cene while the latter is a result of the lowest glacial sea level stand.

LITHOLOGY

The lithology of Chatham Rise is **poorly known** and can only in part be pieced together from rocks exposed on Chatham Island and those taken in **bottom samples**.

Many of the rock fragments from the Chatham Riseare believed to be locally derived (Fig. 2). This is based upon generally accepted criteria for autochthonous occurrence : large size, abundant rocks of similar lithology, fresh fracture or angularity, and fragile or poorly consolidated rocks (Emery 1960). In certain areas of the Rise, however, mixed assemblages of exotic rock types have been recovered that include red feldspathic sandstone, garnetiferous granite and granite gneiss, dioritic gneiss, dark greywacke. schist and andesite (Cullen 1962). The red sandstone, in particular, shows undoubted evidence of glacial transport, and it is considered that the assemblages in which this rock occurs have been ice-rafted, presumably from Antarctica.

The oldest rock type recovered from the Rise is from the Chatham Islands, and is a light grey, mediumgrained, well-laminated schist which is correlated on petrographic and lithologic grounds with the Otago Schist on South Island (Allan 1929; Hay et al. 1970). Westward, along the strike of the schist on Chatham Island, similar schists have been dredged (Reed & Hornibrook 1952; Cullen 1965). These, and samples taken during this study, indicate extensive exposures on Matheson Bank, and to a lesser degree on the arch extending to the west from the Chatham Islands. While the lack of schist in samples west of 180° suggests it is not exposed, Houtz et al. (1967) believe the base reflector in seismic profiles over Reserve Bank represents the westward extension of the schist. Otago Schist, although exposed only on the eastern portion, may then extend beneath younger formations along the remainder of the length of the Rise.

On the South Island, Otago Schist has been interpreted as a metamorphosed basal section of a thick sequence of greywackes which conformably overlies it (Houtz *et al.* 1967; Brown *et al.* 1968). Greywackes. which grade into schist on Chatham Island and appear equivalent to these Triassic and Jurassic greywackes, are dredged from widely scattered localities on the Rise (Fig. 2). Some of these greywackes may be derived from a greywacke conglomerate, such as the Cretaceous Headland Conglomerate found on Pitt Island. Whether eroded from primary or secondary deposits, their presence on Reserve Bank, Mernoo Bank, Pitt Island, and Chatham Island indicates their original extent. The presence of schist on Matheson Bank suggests erosional removal of greywacke cover from that feature.

Late Lower to early Upper Cretaceous deposits are represented by a series of conformable conglomerates, sandstones and calcareous tuffs, which constitutes the Waihere Formation of Pitt Island. The basal Headland Conglomerate (composed of rounded schist and greywacke clasts) probably indicates a major unconformity between it and underlying beds (Hay *et al.* 1970). The microflora from lignitic lenses within the sandstones suggests non-marine conditions which gave way to marine conditions in which the tuff was deposited.

Fig. 3. The Chatham Rise, New Zealand : phosphorite locations.

10

Paleocene to Lower Eocene grits, greensands, phosphatic nodules and limestones make up the Tioriori Group which disconformably overlies Otago Schist on Chatham Island. Shallow marine conditions are indicated.

Volcanics and limestones from upper Middle to lower Middle Eocene strata constitute the Kekerione Group on the Chatham Islands. The volcanics comprise basaltic lavas, calcarcous fossiliferous tuff, and pillow lavas with lenses of limestone. Hard crystalline limestone (Te Whanga Limestone) containing angular schist fragments and a few phosphatic nodules is overlain by a soft limestone composed of polyzoa and foraminifera, which also contains thosphatic nodules (Te One Limestone). Some of the Eocene limestones are similar to Bortonian (Middle Eocene) cross-bedded foraminiferal limestone from Matheson Bank (Cullen 1965) (Fig. 2). These limestones from Chatham Island and Matheson Bank indicate shallow water conditions in both regions during the Middle Eocene.

Miocene argillaceous limestones have been reported from a station between Chatham Island and Matheson Bank by Cullen (1965) and phosphatised Upper Miocene foraminiferal ooze fragments (the phosphorites of this study, Fig. 3) are abundant in many areas between Reserve Bank and Chatham Island. These are the youngest dated consolidated rocks known from submerged portions of the Rise. Similar rocks of Miocene age have not been reported from the Chatham Islands.

Unconformably overlying Te One Limestone (Eocene) is a series of lava flows and interbedded calcareous tuffs of Upper Miocene to Lower Pliocene age. They were, in part, extruded under water, as evidenced by pillow structures.

Upper Pliocene to lower Pleistocene shallow water limestones and tuffs rest disconformably upon the Te Whanga Limestone of Eocene age.

Although volcanic rocks are found on many areas of the Rise, it is not now possible to date them, nor to correlate them with volcanics on the Chatham Islands or the South Island.

Cherts have been recovered from the saddle between Matheson and Reserve Banks. Except for suggesting a Tertiary age by reason of their association with Miocene phosphatised oozes, it cannot be said when they were deposited.

SEDIMENTS

Sediment distribution on the Chatham Rise has been treated in some detail by Norris (1964), from whose work this discussion has largely been taken. Norris has categorised the sediments as allochthonous rock fragments, authigenic minerals, organic remains, faecal pellets, and monomineralic grains. While allochthonous rocks have been reported (Cullen 1962), they are quantitatively unimportant.

Of the authigenic minerals found, glauconite is the most common and to some extent forms a part of most sediments. Very high concentrations, sometimes over 50 per cent, are centred over Reserve Bank and to a

lesser extent north of Chatham Island. Glauconite occurs mainly as dark green rounded grains, internal casts of foraminifera, and as replacements of faecal pellets. Cullen (1967) demonstrates that the age of rounded grains from one location on Reserve Bank is between 5 and 10 million years. Based upon the age, rounding, sorting, concentration in the upper portion of cores, and extreme degree of concentration on shallows, Cullen proposes they have been derived from pre-existing rocks by winnowing and erosion. Several sediment samples from shallow areas containing mixed and reworked microfossil assemblages tend to support this idea. Kennett'& Casey (1969) report three samples from Matheson Bank which contain glauconite casts of Eocene foraminifera mixed with Recent foraminifera. They suggest that a limestone such as the Eocene glauconitic-foraminiferal rocks from Matheson Bank would be an adequate source of glauconite. A similar mixture of late Eocene to early Miocene coccoliths and discoasters with Recent coccolithophores and foraminifera is found on Matheson Bank (Norris 1964).

Calcareous organic remains such as shell fragments and foraminiferal tests form a major portion of the Chatham Rise sediments. Regions shallower than 150 m and removed from sources of terrigenous material are covered with shell gravels. Shell fragments include few if any extinct forms and thus point to a recent origin.

Below 150m the calcareous fraction of the sediment consists mostly of foraminifera. Foraminiferal remains are often sufficiently abundant to class the deposits as foraminiferal oozes. Foraminifera may be exclusively Recent although, as previously noted, assemblages of Eocene and Recent age are reported from Matheson Bank.

While detrital sediments are found around Chatham Island, land-derived material is largely excluded from the Rise because of topographic isolation from the mainland, and thus forms only minor portions of sediments in deeper areas of Rise crest. Norris (1964) suggests that the assemblage of minerals found in some Chatham Rise sediments (glass shards, feldspars, hypersthene, augite, and quartz) can be accounted for by wind transport of Taupo ash showers from the North Island.

STRUCTURE

Subsurface structure of the Chatham Rise is known from a series of seismic reflection profiles taken over the Rise by scientists from the Lamont-Doherty Geological Observatory (Houtz *et al.* 1967). The profiles show the Rise to be anticlinal along an east-west axis. Truncation of tilted Upper Eocene strata on the crest of the Rise indicates post-Eocene emergence.

Bathymetric cross-sections suggest normal faulting may have been important in forming the Banks. Around Matheson Bank, vertical offsets up to 50m can be seen (Fig. 4). On the Chatham Rise, the majority of traceable faults strike west-north-west but are discontinuous and may be offset in some instances by north-south trending faults.

Several structural trends and periods of deformation are distinguished on the Chatham Islands (Hay *et al.* 1970). East-west trends marked by faults, strike of schistosity, and linear distribution of intrusives are present in the northern section of Chatham Island and may reflect pre-Cretaceous tectonic activity. Cretaceous structures, consisting of north-east trending folds cut by later north-east trending tensional faults with throws of less than 6 m, are found on Pitt Island (Austin *et al.* 1972). Post-Eocene normal faults, oriented north-east and north-west are inferred on Chatham and Pitt Islands, respectively, and gentle late Tertiary-early Pleistocene folding about an eastwest axis is found on Pitt Island.

During late Paleozoic and early Mesozoic times, the area occupied by the Chatham Rise was an eastward extension of the New Zealand Geosyncline (Fleming 1962; Hay *et al.* 1970). Beginning in mid-

Fig. 4. Bathymetric profiles on the Chatham Rise.

Jurassic, the thick sequence of greywackes and interbedded basalts which formed the geosynclinal axial facies was elevated during the Rangitata Orogeny (Brown *et al.* 1968). Emergence of the eastern portion of the Rise prior to the Lower Cretaceous is indicated by Lower Cretaceous greywacke conglomerates and lignitic sandstones containing microflora on Pitt Island, as well as Paleozoic-Lower Eocene beds overlying Otago Schist on Chatham Island. It may also be possible to infer a similar unconformity on Matheson Bank from the absence of all but schists and Eocene limestones in samples collected in a rather dense pattern.

The rocks suggest that, by early Tertiary time, shallow marine to estuarine conditions prevailed on the eastern part of the Rise. The lack of detritals in these sediments (Hay *et al.* 1970) indicates the absence of an elevated land mass. The conditions were similar to those which existed on the eastern coast of the South Island and Campbell Island (Brown *et al.* 1968). Apparently the region was at that time characterised by land areas of low relief and transgressive seas.

As indicated by the widespread occurrence of phosphatic foraminiferal oozes, much of the Rise was submerged during the Miocene. Although the Chatham Islands may have been emergent (Hay *et al.* 1970), high land masses were still absent and thus rocks are very low in clastics. The Rise probably existed as a relatively shallow, isolated feature. The environment of deposition was similar to seamounts, ridges and banks, where foraminiferal oozes are now accumulating (Emery 1960; Karig *et al.* 1970).

On the South Island, Pliocene-Pleistocene time was dominated by the Kaikoura Orogeny (Brown et al. 1968). Common unconformities and disconformities between strata of Eocene and early Pleistocene age on Chatham Island probably reflect these tectonic movements. The occurrence of Miocene foraminiferal rocks on portions of the Rise where Eocene strata are truncated indicates post-Miocene emergence which is also probably related to the Kaikoura Orogeny. Shallow water conditions since the late Miocene could also explain the occurrence of winnowed glauconite (from 5 to 10 million years old) and mixed fossil assemblages. Some indication of the degree of vertical movement on the eastern part of the Rise is given by a late Pleistocene terrace around Chatham Island which is as much as 293 m below present-day sea level.

After early Pleistocene times, Chatham Island was largely submerged by a marine transgression which was followed by emergence during the glacial lowering of sea level.

DESCRIPTION OF THE PHOSPHORITES

EXTERNAL CHARACTER

Phosphorite nodules from the Chatham Rise are hard, dense, and many have a smooth black glauconitised exterior surface which is rarely glazed or shiny. Encrusting organisms are not uncommon (Fig. 5).

The size of phosphatic nodules is variable. A majority of the larger nodules are less than 5 cm in length although some reach 15 cm. Microscopic examination of sieved samples reveals that phosphorite particles are very common in fractions with grainsizes ranging down to a few millimetres, and less common in finer-grained fractions.

On the basis of available specimens, the amount of variation and average specific gravity of phosphorite appears to decrease with increasing size (Fig. 6). Nodules less than 2 cm have densities that vary between 2.5 and 3.0 g cm^{-3} , while nodules over 5 cm vary between 2.4 and 2.5 g cm^{-3} .

Because they have sustained several periods of fracturing, rounding, and boring by organisms, nodules are extremely variable in shape. They may be wellrounded, blocky, angular or highly perforated by borings. In many nodules several ages of fracturing can be distinguished by variations in colour and degree of glauconitisation, as well as the angularity of corners formed by fracture intersection. In some instances, more than three periods of fracturing can be identified on the same nodule. Typically, the oldest surfaces are well rounded and have a black glauconite coating. Younger fracturing is characterised by surfaces that are not so well rounded, lighter in colour (mostly green) and less thoroughly glauconitised. Most recent fractures have no glauconite coating and very angular edges. In some instances, unglauconitised surfaces are attributable to breakage

Fig. 5. Typical Chatham Rise phosphorite nodules 1 "small" burrow; 2 "large" burrow; 3 coral attached to unglauconitised fracture surface.

Fig. 6. Relationship of specific gravity and size (given as long axis length) in phosphorite nodules from Chatham Rise. Data taken on nodules from eight stations.

during sampling. These are distinguished by their extremely fresh, unweathered appearance in contrast to the older unglauconitised surfaces which are characterised by pitting and by the adherence of organisms (Sample CX37, Fig. 5). In a general way, the age of fracturing is related to the degree of rounding; more angular nodules tend to have more recent fractures.

Considering the density, size, and coherence of the nodules, it is doubtful whether any deep water mechanism could account for the fracturing. Reworking and abrasion in a shallow high-energy environment are required. Several such periods of reworking were apparently separated by times of deeper submergence when nodule surfaces were glauconitised.

Well preserved mollusc or worm burrows are not uncommon in nodules. They are typically tube-like, less than 1 cm in diameter, and generally extend completely through the nodules. Fractures commonly cross-cut the tubes both perpendicularly and longitudinally (Fig. 5). Their interior surfaces are glauconitised and appear comparable to the "oldest" fractured surfaces on the nodule, indicating that the burrows were made prior to the oldest discernible period of glauconitisation. The lack of infilling indicates that the burrows are post-lithification features.

MACROSCOPIC EXAMINATION OF NODULE INTERIOR

In cross-section (Fig. 7), nodules are composed of tan to grey inducated foraminiferal ooze enclosed by a rind of dark green glauconite. Texturally, the material is rather uniform. Primary depositional structures such as bedding or accretionary zonation are not present.

In many nodules the irregular distribution of brown and grey areas gives the nodules a mottled appearance. Where small brownish patches are densely and evenly scattered throughout, an argillaceous appearance results. Most tan and light brown areas are randomly distributed and appear unrelated to nodule geometry. In some nodules, however, the brown region tends to be of rather uniform thickness, leaving an inner grey zone (Fig. 7).

Darker brown or yellow brown areas occur within and adjacent to glauconitised surfaces. The regions are rather narrow and are not more than 2 or 3 mmthick.

The glauconite rind covers all naturally-formed external surfaces with the exception of "young" fractures. Glauconite on older surfaces penetrates up to 2mm into the interior while penetration on recent surfaces is noticeably less.

Burrows are not uncommon within the nodules. In addition to those previously mentioned, smaller burrows are revealed in sections. While somewhat uniform in size (all less than ? mm in diameter), they vary in terms of infilling, presence of a light "alteration zone", and glauconitisation of the wall (Fig. 7).

Fig. 7. Cross-section of Chatham Rise phosphorite nodule : 1 unfilled glauconitised burrow; 2 unfilled unglauconitised burrow with alteration zone; 3 filled burrow. Note : Mottled appearance and dark material near external surface. Dotted area indicates portion analysed separately for P2O5 (see text in section on "Chemical Composition"). Scale line is 1.0 cm. Polished sections of nodules were etched in formic acid to distinguish less soluble phosphatic material from more soluble calcium carbonate. Microscopic examination showed foraminifera tests within light regions to be most susceptible to solution. Almost all were totally dissolved, leaving welldefined moulds and casts. Within brown or yellowish regions, foraminifera were less soluble and thus probably phosphatic. Brown to yellowish material is found both in the outer part of the zone inside the glauconite rind and as small randomly scattered patches which were less soluble than the light coloured, apparently less intensely phosphatised ooze.

In several sections, etching revealed small brassy crystals (pyrite ?) within foraminifera tests throughout the nodules.

MICROSCOPIC EXAMINATION OF NODULE INTERIOR

Microscopic examination of thin sections reveals that Chatham Rise phosphorites are composed of welllithified partially-phosphatised foraminiferal limestones or chalks. A majority of the nodules are more than 30% (Fig. 8) foraminifera; some contain 10% or less (Fig. 9). The variation in foraminifera percentage is rather distinct, gradational types between 30 and 10 being rare. Tests in both are distributed randomly throughout a crypto-crystalline matrix. Foraminifera are commonly whole and do not appear to have been abraded. The tests range in size from 0.2 to 0.6 mm.

Partial dissolution of the nodules in HCl released foraminiferal moulds which could be identified. All samples examined yielded Late Miocene dates (O.L. Bandy & R.L. Fleischer, pers. comm.).

Collophane appears light brownish yellow to dark reddish brown. It replaces foraminifera and matrix material, usually without obliterating the foraminifera tests (Fig. 10). Dark brown collophane is common as

Fig. 8. Photomicrograph of phosphorite nodule composed of foraminifera tests (C56B). Scale line is 0.1mm.

a pseudomorphic replacement or test filling, Where both are phosphatic, the matrix collophane is usually a lighter colour than that replacing the tests. Selective replacement is common but variable. Tests alone maybe replaced, or sometimes the matrix and material within the test may be replaced, leaving the test untouched. Most intense replacement of foraminifera and matrix generally occurs in regions, or occasionally two distinct regions, on the outer edge of the zone inside the glauconite rim. Within the rest of the nodule replacement is random, although in some (Fig. 7) a central zone of less intense replacement is found.

Fig. 9. Photomicrograph of phosphorite nodule containing few foraminifera tests (CX66B). Note opaque material (O) concentrated at the boundary of the glauconitised rim (G) and the collophane replaced area (C). Scale line is 0.1 mm.

Fig. 10. Photomicrograph of phosphorite nodule illustrating collophane (C) replacing chalk (Ch) (CX69A). Note the occasional, selective infilling of the foraminifera tests by collophane. Scale line is 0.1mm.

Fig. 11. Photomicrograph of phosphorite nodule illustrating collophane infilled fracture (C) cross-cutting the glauconite replacement rim (G) (CX79B). Scale line is 0.1 mm.

Collophane is found to replace glauconite that occurs as scattered foraminifera test fillings. Replacement is most intense on the exterior portions of the glauconite and may on occasions totally or partially replace the enclosing test. Collophane may also occur as crack fillings which cross-cut glauconite replacement rims and foraminifera replaced by an earlier generation of collophane (Fig. 11). Foraminifera tests within the glauconite rim are occasionally replaced by collophane.

Glauconite occurs within the nodules as (1) a rim replacement; (2) foraminifera filling; (3) crack fillings; and (4) rounded clastic grains.

Exterior surfaces on the nodules have been replaced by glauconite (Fig. 12). The thickness of the rim is variable but shows no relationship to surface irregularities. That the glauconite is not a coating but represents true replacement of foraminiferal ooze is indicated by the continuity of texture across the replacement boundary. Partially obliterated foraminiferal tests are common within the glauconite (Fig. 12). Where the leading replacement edge is distinct, a foraminifer may lie partially within the glauconite, leaving the remainder of the test unreplaced. The nature of the transition from glauconite rim to unreplaced matrix is variable. Usually grass green glauconite grades to a light green or yellow glauconite which terminates at a boundary marked by a concentration of small disseminated opaque particles. A grey or brown layer containing coarser opaque matter may be present. Further in, a layer or two of matrix, and foraminifera replaced by collophane are found. Glauconite rims also grade directly into an evenly replaced collophane interior which may or may not have a disseminated opaque layer.

The concentration of collophane in a layer beneath the glauconite rinds may be a result of inward phosphate migration during replacement by glauconite resulting in regions of secondary collophane concentration. Throughout the replacement rind, scattered foraminifera may contain a darker glauconite than that replacing the matrix. While this may indicate that the interior of the foraminifera is more favourable to formation of dark glauconite, it is inconsistent with the observation that not all foraminifera contain the darker variety, even when adjacent. More probably the foraminifera with darker glauconite represent those infilled with glauconite prior to replacement. This would be consistent with Pratt's (1971) observation that darker glauconites tend to be older than light forms.

Grass-green glauconite occasionally occurs as foraminiferal test fillings. Such glauconite-filled tests make up as much as 5% of all tests. They are randomly distributed throughout the nodules and are adjacent to foraminifera that are not filled. Their distribution among unfilled tests and the definite confinement of glauconite within the test suggests either that this glauconite formed prior to lithification and is not a post-depositional replacement feature, or that the glauconite-filled tests represent reworked material from a glauconitic ooze. The latter idea is not supported by the lack of abrasion of the tests.

Darker green varieties of glauconite fill cracks that cross-cut glauconitised rims indicating later periods of glauconitisation (Fig. 12). This glauconite may represent material deposited during glauconitisation of the successively younger angular exterior surfaces.

Opaque Minerals. Most nodules contain a noticeable amount of opaque material which is present as disseminated particles, foraminifera test replacements or test fillings. The material may at least in part be pyrite which was noted in foraminifera on etched interior sections.

Fig. 12. Photomicrograph of phosphonte nodule showing the transition from the glauconitised rim (G) to the collophane replacement zone (C) (C6-D). Note ghosts of replaced foraminifera tests and late glauconite vein filling. Scale line is 0.1 mm.

Disseminated opaque particles up to 0.2 mm are found scattered throughout unphosphatised material concentrated at collophane - non-collophane 10 boundaries (Fig. 9). Secondary origin is indicated by their delicate dendritic edges and replacement relationships with foraminifera. The scarcity of opaque particles in phosphatised areas, as compared to their abundance in adjacent unreplaced regions, might be interpreted as the result of obliteration of opaques during replacement. However, where opaque particles are found in collophane, they have the same delicate dendritic edges and cross-cut foraminifera replaced by collophane, and are thus of post-replacement origin. It would appear that non-phosphate material is more susceptible to replacement by the opaques.

Concentrations of particles are found at boundaries of the glauconite rim with the collophane and unreplaced chalk (Fig. 13).

Opaque material may selectively replace foraminifera tests, even those previously replaced by collophane or glauconite; such replacement occurs anywhere in the nodule. Infilling of foraminifera by opaque material is common and not necessarily accompanied by test replacement (Fig. 14).

Opaque particles were apparently the most recently formed material. The concentration at boundaries, especially those of glauconite replacement, may indicate that the opaque material also was remobilised during the replacement process, and was either concentrated at the replacement front, or formed preferentially in unreplaced foraminiferal ooze.

Detrital Grains. A small number of detrital mineral grains were noted in thin sections. To facilitate their identification, nine phosphorite nodules from different stations were dissolved in hydrochloric acid. The insoluble residue was screened, and the plus 200 mesh fraction retained for petrographic analysis. This portion of the insoluble residue was always less than 1% by weight of the whole nodule sample.

Most of the grains measure between 0.62 and 0.125 mm. With few exceptions, the grains are quite angular showing no indication of abrasion on sharp corners. Glass shards, quartz and feldspar are common or even dominant in many of the assemblages, and are associated with subordinate epidote, sphene, zircon and hornblende (Table 1).

Glass shards are present in all residues examined and abundant in many of these. They are clear, very angular and less than 0.125 mm in size. A majority are curved and many contain fine dark-coloured inclusions.

Quartz is similarly common and occurs as small angular fragments less than 0.125mm or as slightly larger rounded grains. All are clear and lack inclusions.

Feldspars are found in many samples. Most are untwinned plagioclases which were distinguished from minor quantities of orthoclase by their higher index of refraction. The grains are angular, small and often exhibit good cleavage.

Epidote grains are clear, equant, angular and of high birefringence.

Zircon is present as chipped or fragmented crystals. Fragments are clear and, although broken, show no other signs of mechanical abrasion.

Sphene and hornblende, when present, are represented by only a few grains. Sphene is clear and angular. Hornblende fragments are tabular and exhibit green-yellow/green pleochroism.

Fig. 13. Photomicrograph of phosphorite nodule showing a concentration of opaque material (O) at the boundary of the glauconite rim (G) and collophane zone (C) (CX37A).

Fig. 14. Photomicrograph of phosphorite nodule showing opaque material (O) (CX66B). Note selective infilling of foraminifera tests.

17

Mineral	CX59A	C64A	CX109B	C56A	C46A-D	C68A	C69A	C46B-B	C46
Glass shards	x	С	С	x	С	С	С	x	x
Quartz	X	С	С	x	С	С	С	x	х
Feldspars		С	С		С	С	С	x	x
Epidote	~	*2	U	(e)	R	R	R		x
Sphene			R		R		R	x	-
Zircon	-	υ	U		R	U	м	•S	
Hornblende	÷.	R	R	10	R	R	R		
Glaucophane	÷.	*	÷		3. • 3	R		2	
		С = солшо	n (25-50%)		м	= moderat	ely common	(5-25%)	
		U = uncom	mon (1-5%)		R	= rare (10	ess than 1%)	
		X = prese	nt, but insuf	ficient num	ber of total	grains to b	e meaningfu	1	

TABLE 1. Relative frequency of mineral grains in the insoluble residue of Chatham Rise phosphorite nodules.

Aeolian transport of the grains is suggested by their small size, good sorting and their unabraded character. Experiments suggest that grains of this size, 0.62 to 0.125 mm, can be transported by strong winds only a few miles (Udden 1898), and it is assumed, therefore, that the detrital grains in the phosphorite nodules have been derived from land masses that existed nearby.

CHEMICAL COMPOSITION

Available analyses of phosphorite nodules (Table 2) show that CaO, P_2O_5 and CO_2 make up over 70% of the nodules. Lesser amounts of Fe_2O_3 , F, SiO₂ and insolubles account for nearly all of the remainder. Most of the P_2O_5 and F, and part of the CaO and CO₂ make up the collophane within the nodules. Some CaO and CO_2 most probably exist as calcite. Silica, iron and insolubles are attributed to detritals, opaque particles and glauconite.

The phosphate content of samples from the Chatham Rise, representing 51 station averages, ranges between 16 and 25% and averages $20.5\% P_2O_5$ (Appenlix III). A histogram of the frequency of P_2O_5 percentages shows a definite peak between 20 and 22% (Fig. 15).

A selection of nodules of different sizes from the same stations, and nodules with different percentages of foraminifera were analysed to discover if the variability of $P_2 O_5$ (collophane) content could be attributed to either of these variables.

Based upon the analyses of three size groups from three stations, no definite pattern relating P_2O_5 and size was found. The only generalisation made here is that the P_2O_5 content of the 0.5 to 1.0cm nodules is higher than the 2.5 to 3.5cm nodules at the same station (Table 3).

A comparison of the P_2O_5 content of nodules high (30%) and low (10%) in foraminifera shows no significant variation in either range or average (Table 4).

Analyses of various regions within several nodules showed virtually no variation in P_2O_5 . Even analyses from the brownish outer and light tan inner areas of a distinctly zoned nodule (CX61A, Fig. 7) both indicated 16% P_2O_5 . These results are consistent with an electron microprobe analysis of a cross-section of a nodule, which did not detect any major difference in the composition across the surface of the nodule section (Buckenham *et al.* 1971). These data are significant in that they indicate that the colour zonation noted in some nodules is not a result of differential phosphate replacement as originally suspected by the author (Pasho 1972).

Fig. 15. Histogram of the P_2O_5 content in phosphorite nodules representing 51 stations on the Chatham Rise (Appendix III).

	1	2	3	4	5	6	7	8
P205	25.4	19.18	18.10	19*	21.8	19.51	20.43	20.74
CaO	42.70	47.50	44.00	49*	37.5	53.31	51.25	40.04
A1,0,	т	Т	0.30	-	-	-		
Fe,0,	1.43	2.50	4.27	-	-	1.48	2.18	2.37
MgO	Т	т	т	-	-	0.50	0.49	
Insolubles	4.00	0.10	5.12	-	-		+	
Organic	N	N	N		-	* 3		
C0,	12.40	20.92	19.11	14.1	9.3	20		15.3
F	1.50	1.30	1.60	2.4	2.56	2.28	2.65	2.04
R203	-	-	-	4.2	-	-		1.0
SiO ₂	*			4.5	6.9	0.45	1.15	
CaO/P20s	1.68	2.48	2.37	2.58	1,68	2.73	2.51	2.29
C02/P202	0.49	1.09	1.06	0 74	0.43	÷0		0.74
F/P205	0.059	0.066	0.086	0.125	0.117	0.117	0.130	0.100
1. 2. 3. 4. 5. 6. 7. 8.	Monsoon 73 Monsoon 74 Monsoon 75 Global Mar Global Mar Global Mar Averáge	Analyst Smith Analyst Smith Analyst Smith ine CX59 (Rou II-2733 (Reed ine CX45 (Burn ine CX79 (Burn	h-Emery, Los / h-Emery, Los / h-Emery, Los / se 1969) and Hornibron nett 1974) nett 1974)	Angeles Angeles Angeles Dk 1952)		* = Not ave - = No ana T = Trace N = Nil	eraged lysis	

TABLE 2. Collected partial chemical analyses of Chatham Rise phosphorite nodules.

CHARACTERISTICS OF DISTRIBUTION AND ASSOCIATIONS

With few exceptions, phosphorite nodules are recovered on the Chatham Rise only in the area between Reserve Bank and the western shelf of Chatham Island (Fig. 3). Phosphorite appears to be absent

Station	0.5-1.0cm	1.5-2.0cm	2.5-3.5cm
C66	24.7	20.2	20.1
CX55	22.3	18.8	21.2
C56	22.2	27.7	18.8

TABLE 3. $P_2 O_5$ content of various size phosphorite nodules from three stations on Chatham Rise.

Percent foraminifera	10%	30%
Number of nodules	4	5
P ₂ O ₅ range (%)	17.2-21.4	18.6-20,2
P205 average (%)	18.8	19.5

TABLE 4. Comparison of $P_2 O_5$ content in nodules with different percentages of foraminifera.

from Mernoo and Veryan Banks and the shallower areas of the Chatham Island shelf. Over most of the region, phosphatic samples are scattered, and separated by non-nodular samples. A significant concentration of phosphorite nodules occurs in the saddle between Matheson and Mernoo Banks. The great majority of nodules were recovered from between 400 and 500m. No nodules are found shallower than 200m. Lack of samples from a depth greater than 500m prevents generalisation on the maximum depth at which they occur.

A variety of lithologic types and sediments are associated with phosphorite nodules. Limestones, chert, schist and volcanics accompany nodules. Green mud, foraminiferal ooze and glauconitic silts are the common sediment types associated with nodules. The type of associated material depends entirely upon what is present in that region; in other words, there appears to be no relationship between phosphorite distribution and the distribution of associated lithologic or sediment type. Phosphorite nodules may be entirely absent or make up the total of fragments larger than 2.4 cm. Most commonly nodules make up less than 50% of the large grain sizes, averaging 10 to 15%. Comparison of the size distribution of the minus 3.8 cm sediment and the distribution of phosphorite grains within individual size fractions indicates phosphorite is basically confined to the plus 0.599mm fractions irrespective of the total sediment distribution pattern (Fig. 16).

Fig. 16. Diagrammatic representation of two total sediment samples from the Chatham Rise illustrating the distribution of P2O5 in various size fractions. (Data from Marine Global Inc.). Class intervals are British Standard mesh size.

DISCUSSION AND CONCLUSIONS

DEPOSITIONAL SETTING

During the late Miocene, foraminiferal oozes and chalks were deposited over much of the area now occupied by the Chatham Rise. The accumulation of such oozes and chalks, which contain rather insignificant amounts of detritals, suggests that the region was a submarine bank or ridge, isolated from detrital sedimentation, in an area of high or moderate planktonic surface productivity. In such a situation, relatively coarse skeletal debris is deposited, whereas only the finest detrital sediment from shore can reach the bank. Further separation of fines may have resulted from winnowing by bottom currents.

The relatively minor amounts of glauconite, which occur mainly as test fillings, might be attributed to the existence of reducing micro-environments within the individual tests. Such a condition may lead to the alteration of clays filling the test to glauconite (Emery 1960; Ehlmann *et al.* 1963). Other conditions which are believed necessary for glauconite formation are not inconsistent with a bank top environment. They include a depth of formation between 10 and 1800m; temperature as "probably not favoured by markedly warm waters" (Cloud 1955); and a low sedimentary influx (Cloud 1955; Bell & Goodell 1967).

Absence of Miocene deposits on the far western and far eastern stretches of the Chatham Rise could be explained by the emergence of these areas during that time. If these areas were exposed, they were probably of low relief.

The setting, as described here, is quite similar to the situation existing on the Santa Rosa-Cortez Ridge of the Southern California Borderland (Uchupi 1954, 1961).

PHOSPHATISATION

The sporadic and irregular distribution of firstgeneration collophane-replacement features, and the lack of significant variations in $P_2 O_5$ content within individual nodules are consistent with phosphatisation of the chalk during diagenesis. A possibly similar modern example of the phosphatisation of foraminifera in an unconsolidated sediment from the western shelf of Baja California has been described by d'Anglejan (1967, 1968).

SUBSEQUENT HISTORY

Following diagenesis the deposit was uplifted, perhaps during the Plio-Pleistocene Kaikoura Orogeny. Subaerial erosion resulted in the initial fragmentation of the phosphatised ooze. Weathering of fragments during subaerial exposure may have produced the penetrating brown zones noted in some nodules. Subsequent periods of submergence, with glauconitisation of fracture surfaces, and re-emergence are indicated by the numerous relative ages of glauconitised and unglauconitised fractures. That post-Pleistocene glauconitisation has occurred is independently supported by the occurrence of glacial erratics with a glauconite coating (Cullen 1962). Later fracturing with no glauconitisation was apparently the last stage leading to the present form of the phosphorite nodules. As indicated by the extent of phosphatised ooze fragments, much of the Chatham Rise must have been above sea level at various times since the late Miocene. Significant reworking has occurred on Reserve and Matheson Banks where phosphorites are mixed with Mesozoic greywackes and pre-Mesozoic schists respectively. Whether phosphatised oozes ever existed on Mernoo Bank or the Chatham Islands is open to question. If so, the deposits have been either extensively eroded or are blanketed by younger sediment.

ACKNOWLEDGMENTS

Thanks are expressed to Global Marine Inc., and in particular William Rader, who made samples and data available to the author.

To D.S. Gorsline and J. Bischoff for their constructive criticism and review of this manuscript, and D.J. Cullen for supplying reference material otherwise difficult to obtain, I extend my appreciation.

Much of this work was conducted in laboratories of the Department of Geological Sciences at the University of Southern California, and was partially supported under Contract 14-CS-C001-12849 for the U.S. Geological Survey.

- ALLAN, R.S. 1929: Chatham Islands, the physical features and structure. *Transactions of the N.Z. Institute 59*: 824-39.
- AUSTIN, P.M.; SPRIGG, R.C.; BRAITHWAITE, J.C. 1972: Structural development of the eastern Chatham Rise and of the New Zealand region. Pp 201-15 in Fraser, R. (Comp.) "Oceanography of the South Pacific". N.Z. National Commission for UNESCO, Wellington. 524p.
- BELL, D.L.; GOODELL, H.G. 1967: A comparative study of glauconite and the associated clay fraction in modern marine sediments. *Sedimentology* 9: 169-202.
- BRODIE, J.W. 1964: Bathymetry of the New Zealand region. Memoir N.Z. Oceanographic Institute 11. (N.Z. Department of Scientific and Industrial Research Bulletin 161.) 55p.
- BKOWN, D.A.; CAMPBELL, K.S.W.; CROOK, K.A.W. 1968: *The Geological Evolution of Australia and New Zealand*. Pergamon Press. 409 p.
- BUCKENHAM, M.H.; ROGERS, J.; ROUSE, J.E. 1971: Assessment of Chatham Rise phosphorites. Proceedings of the Australasian Institute of Mining and Metallurgy, Annual Conference 1971, 8: 1-13.
- BURNETT, W.C. 1974: Phosphorite deposits from the sea floor off Peru and Chile: radiochemical and geochemical investigation concerning their origin. [Report]. Hawaii Institute of Geophysics, HIG-74-3: 163p.
- CLOUD, P.E. 1955: Physical limits of glauconite formation. Bulletin of the American Association of Petroleum Geologists 39: 484-92.
- CULLEN, D.J. 1962: The significance of a glacial erratic from the Chatham Rise, east of New Zealand. N.Z. Journal of Geology and Geophysics 5(2): 309-13.
- CULLEN, D.J. 1965: Autochthonous rocks from the Chatham Rise, east of New Zealand. N.Z. Journal of Geology and Geophysics 8(3): 465-74.
- CULLEN, D.J. 1967: The age of glauconite from the Chatham Rise, east of New Zealand. N.Z. Journal of Marine and Freshwater Research 1(4): 399-406.
- CURRAY, J.R. 1969: History of continental shelves. In The new concepts of continental margin sedimentation. American Geological Institute, Short Course Lecture Notes: JC-VI-1 to JC-IV-18.
- d'ANGLEJAN, B.F. 1967: Origin of marine phosphorites off Baja California, Mexico. Marine Geology 5: 15-44.
- d'ANGLEJAN, B.F. 1968: Phospnate diagenesis of carbonate sediments as a mode of *in situ* formation of marine phosphorites : Observations in a core from the eastern Pacific. *Canadian Journal of Earth Sciences* 5 : 81-7.
- EHLMANN, A.J.; HULINGS, N.C.; GLOVER, E.D. 1963: Stages of glauconite formation in modern foraminiferal sediments. Journal of Sedimentary Petrology 33: 87-96.
- EMERY, K.O. 1960: "The Sea off Southern California" John Wiley, New York. 366p.
- FLEMING, C.A. 1962: New Zealand biogeography. A pale-

ontologist's approach. Tuatara 10(2) : 53-168.

- FLEMING, C.A.; REED, J.J. 1951: Mernoo Bank, east of Canterbury, New Zealand. N.Z. Journal of Science and Technology B32(6): 17-30.
- GLASBY, G.P.; SINGLETON, R.J. 1975: Underwater photographs of manganese nodules from the Southwestern Pacific Basin. N.Z. Journal of Geology and Geophysics 18(4): 597-604.
- HAY, R.F.C.; MUTCH, A.R.; WATTERS, W.A. 1970: Geology of the Chatham Islands. N.Z. Geological Survey Bulletin 83: 86 p.
- HOUTZ, R.; EWING, J.; EWING, M.; LONARDI, A.G. 1967: Seismic reflection profiles of the New Zealand Plateau. Journal of Geophysical Research 72: 4713-29.
- KARIG, D.E.; PETERSON, M.N.A.; SHORE, G.C. 1970: Sediment capped guyots in the Mid-Pacific Mountains. Deep Sea Research 17: 373-8.
- KENNETT, J.P.; CASEY, R.E. 1969: Foraminiferal evidence for a pre-Middle Eccene age of the Chatham Rise, New Zealand. N.Z. Journal of Marine and Freshwater Research 3(1): 20-8.
- KNOX, G.A. 1957: General account of the Chatham Islands 1954 Expedition. Memoir N.Z. Oceanographic Institute 2. (N.Z. Department of Scientific and Industrial Research Bulletin 122). 37 p.
- NORRIS, R.M. 1964: Sediments of Chatham Rise. Memoir N.Z. Oceanographic Institute 26. (N.Z. Department of Scientific and Industrial Research Bulletin 159). 39p.
- PASHO, D.W. 1972: Character and origin of marine phosphorites. University of Southern California, Geology Publication 72-3: 1-188.
- PRATT, R.M. 1971: Lithology of rocks dredged from the Blake Plateau. Southeastern Geology 13: 19-38.
- REED, J.J.; HORNIBROOK, H. deB. 1952: Sediments from the Chatham Rise. N.Z. Journal of Science and Technology B34(3): 173-89.
- ROUSE, J.E. 1969: Phosphorite from the Chatham Rise sediments in New Zealand. Annual Report N.Z. Fertiliser Manufacturers Association, 1968-69: 29-31.
- SUMMERHAYES, C.P. 1967: Marine environments of economic mineral deposition around New Zealand : a review. N.Z. Journal of Marine and Freshwater Research 1(3): 267-82.
- UCHUPI, E. 1954: Submarine geology of the Santa Rosa-Cortez Ridge. Unpublished M.S. thesis, Department of Geological Sciences, University of Southern California, Los Angeles. 72p.
- UCHUPI, E. 1961: Submarine geology of the Santa Rosa-Cortez Ridge. Journal of Sedimentary Petrology 31: 534-5.
- UDDEN, J.A. 1898: The mechanical composition of wind deposits. Augustana Library Publications 1:65p.
- WATTERS, W.A. 1968: Phosphorite and apatite occurrences and possible reserves in New Zealand and outlying islands. N.Z. Geological Survey Report 33: 15 p.

APPENDIX I

CHATHAM RISE STATIONS GMI Cruise I

Roman numerals indicate a resampling of the same station. Capital letters indicate a unique station, but one which was not in the original cruise plan. Depth uncorrected for regional variation of sound velocity.

Station	Latitude	Longitude	Depth	Station	Latitude	Longitude	Depth
(C)	(°S)		(m)	(C)	(°S)		(m)
	47 49	175 01 5	477	56.)	43 35	179 10 W	400
1	43 48	175 UI E	437	56 1	45 55	175 10	
2	43 40	1/5 25 E	300	56 A	43 38	179 05 W	400
3	43 43	176 UU E	340	57	43 43	179 00 W	386
4	43 44	170 29 E	400	58	43 40	179 00 W	391
5	45 40	177 00 E	433	59	43 45	179 17 W	356
0	43 43	1// 23 E	3/5	60	43 45	179 30 W	324
2	43 45	178 UU E	452	60 A	43 40	179 30 W	345
8	43 50	178 29 E	412	61	43 40	179 30 W	394
9	43 45	179 UZ E	433	62	43 20	179 30 W	482
10	45 5/	179 29.5 E	412	63	43 28	179 45 W	430
11	43 47	179 59.0 K	400	64]	43 36	180 00 W	390
17	43 57	179 SU W	318	64 T	45 50	100 00	
14	44 02	178 34 W	309	64 4	47 71	180 00 W	393
14	44 34	178 JU W	409	65	43 27	179 58 F	393
15	43 32	178 UU W	409	66	43 18	179 59 F	455
10	44 05	177 28 W	391	67	43 24	179 44 F	432
1/	44 24	177 UU W	500	69]	43 30	179 30 F	391
10	44 09	170 57 W	282	68 1	45 50	175 56 2	
19	44 04	177 UU W	104	60 1	43 23	179 30 F	394
20	44 15	176 32 W	120	60 1	45 25	175 50 2	001
21	44 25	176 32 W	164	70	43 26	179 15 F	382
22	44 50	1/6 32 W		70	43 20	179 00 F	382
23	44 30	176 UU W		71	43 37	178 58 F	386
24	44 18	1/6 UU W	73	72	43 18	179 00 E	400
25	44 27	175 30 W	437	73	43 16	178 46 F	340
26	44 12	175 30 W	182	74	43 20	178 42 E	332
27	44 02	175 30 W	127	74 6	43 43	178 30 F	338
28	43 50	1/5 40 W	231	75	43 32	178 30 E	364
29	43 40	175 40 W	292	79	43 20	178 27 F	386
30	44 00	176 00 W	91	70	45 11	179 12 E	318
31	43 46	176 00 W	127	70	43 20	178 01 E	332
32	43 34	176 00 W	229	/9	43 29	178 00 E	286
33	43 22	176 UU W	400	01	43 10	177 58 F	364
34	43 16	176 32 W	270	92	43 10	175 52 E	410
35	43 27	176 32 W	109	97	44 14	175 55 6 F	131
30	43 35	176 32 W	55	94	44 14	176 05.5 E	104
3/	43 48	1/6 5/ W	104	95	44 14	176 16 E	146
38	43 36	177 UU W	106	86	44 02	176 16 F	418
39	43 24	177 00 W	91	97	44 02	175 00 E	278
40	43 12	177 00 W	391	0/	44 20	174 50 E	338
41	43 15	177 27 W	354	80	43 21	174 50 E	328
42	43 25	1// 2/ W	258	09	43 10	175 02 E	120
43	43 36	1// 2/ W	258	01	43 15	175 02 F	157
44	43 48	1// 2/ W	292	02	43 26	175 02 E	373
45	45 44	177 42 W	376	92	43 20	175 02 E	
46	43: 45	178 UU W	364	93	43 30	175 16 F	200
46 1				94	43 34	175 17 E	100
46 A	43 39	178 00 W	364	95	43 12	175 17 E	140
46 A 1				90	43 12	175 77 5	100
46 B	43 35	178 00 W	364	98	43 12	175 20 E	118
46 B I J				100	43 23	175 10 E	455
47	43 28	178 00 W	364	100	45 07	176 10 E	342
48	43 17	178 00 W	354	101	45 15	170 21 E 176 AE E	2942
49	43 19	178 15 W	392	102	43 15	176 AE E	204
50	43 20	178 30 W	405	103	45 05	170 43 E	251
51	43 32	178 30 W	400	104	45 05	177 09 E	205
52	43 40	178 15 W	377	105	43 11	1// US E	220
53	43 43	178 30 W	445	106	45 1/	1// 28 E	280
54	43 31	178 45 W	437	107	43 22	1// 25 E	213
55	43 25	179 13 W	437	108	43 15	1// 20 E	222

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

APPENDIX II

CHATHAM RISE STATIONS GMI Cruise II

Roman numerals indicate a resampling of the same station. Capital letters indicate a unique station, but one which was not in the original cruise plan. Depth uncorrected for regional variation of sound velocity.

Station	Latitude	Longitude	Depth	Station	Latitude	Longitude	Depth
(UX)	(°S)		(m)	(CX)	(°S)		(m)
1	43 35	179 28 W	417	59)	43 33	179 43 F	402
2	43 37	179 28 W	373	59 11		110 40 2	402
3	43 39	179 28 W	373	60	43 31	179 43 F	420
4	43 41	179 28 W	365	61 1	43 31	179 36 F	413
5	43 43	179 28 W	365	61 11			
6	43 45	179 28 W		62	43 32	179 36 E	413
7	43 47	179 28 W	314	63	43 34	179 36 F	431
8	43 49	179 28 W	299	64	43 35	179 36 F	398
9	43 51	179 28 W	289	65	43 36	179 36 F	400
10	43 53	179 28 W	292	66 1	43 37	179 36 F	409
11	43 55	179 28 W	289	66 11			405
12	43 57	179 28 W	303	67	43 38	179 36 F	409
13	43 59	179 28 W	321	68	43 39	179 36 F	413
14	44 01	179 28 W	343	69	43 40	179 36 E	410
15	44 03	179 28 W	406	70	43 42	179 36 F	431
16	44 04	179 36 W		71	43 39	179 29 F	420
17	44 03	179 36 W	347	72	43 38	179 28 E	417
18	44 01	179 35 W	343	73	43 36	179 30 F	413
19	44 00	179 35 W	376	74	43 35	179 31 E	411
20	43 57	179 35 W	380	75	43 34	179 33 E	409
21	43 53	179 35 W	380	76	43 32	179 34 E	396
22	43 51	179 38 W	369	77	43 31	179 29 F	431
23	43 47	179 35 W	365	78	43 20	179 29 E	431
24	43 44	179 36 W	395	79 1	43 23	179 29 E	395
25	43 40	179 36 W	413	79 11			
26	43 42	179 44 W	402	80	43 23	179 27 E	393
27	43 46	179 44 W	376	81	43 29	1/9 29 E	396
28	43 48	179 44 W	365	82	43 32	179 29 E	393
29	43 50	179 44 W	376	83	43 35	179 29 E	417
30	43 54	179 44 W	395	84	43 39	179 29 E	424
31	43 50	179 50 W	402	85	43 41	179 30 E	442
32	43 46	179 50 W	365	86	43 36	179 22 E	424
33	43 42	179 50 W	384	87	43 34	179 22 E	402
34	43 38	179 50 W	406	87 11			
35	43 34	179 50 W	424	88	43 33	179 22 E	415
36	43 49	179 56 W	402	. 89 L	43 32	179 22 E	398
37	43 42	179 56 E	398	89 II J			
37 11				90	43 31	179 22 E	395
38	43 38	179 56 E	413	91	43 30	179 22 E	438
39	43 34	179 56 E	409	92	43 28	179 22 E	402
40	43 30	179 56 E	424	93	43 27.5	179 22 E	395
41	43 26	179 56 E		94	43 27	179 22 E	409
42			457	95	43 25	179 22 E	398
43	43 28	179 49.5 E	442	96	43 23	179 22 E	409
44	43 29	179 50 E	409	97	43 22	179 22 E	424
45)	43 32	179 50 E	395	98	43 23	179 15 E	442
45 II				99	43 25	179 15 E	442
46	⁴ 3 33	179 50 E	402	100	43 27	179 15 E	435
47	43 34	179 50 E	395	101	43 29	179 15 E	418
48	43 35	179 50 E	402	102	43 31	179 15 E	424
49	43 37	179 50 E	395	103	43 32.5	179 15 E	411
49 II)				104 2	43 35	179 15 E	413
50	43 38	179 50 E	402	104 A II			
51	43 40	179 48 E	406	105	43 38	179 15 E	395
52	43 42	179 50 E	395	106	43 40	179 15 E	409
53	43 44	179 50 E	420	107	43 39	179 07 E	426
54	43 41	179 43 E	418	108	43 37	179 07 E	395
55]	43 39	179 43 E	402	109]	43 35	179 07 E	369
55 II)				109 11)			
56	43 38	179 43 E	402	110	43 33	179 07 E	398
57	43 37	179 43 E	406	111	43 31	179 07 E	413
58	43 35	179 43 F	402	1 112	43 26	179 01 F	420

Station (CX)	Latitude (°S)	e Longitude	Depth (m)	Station (CX)	Latitude (°S)	Longitude	Depth (m)
117	47 70	170 01 5	700	1.0		• •	()
113 11	45 50	179 UI E	380	168	43 48	178 52 W	407
11.5 11	43 32	170 01 6	747	109	43 44	178 52 W	396
115 1	43 32	179 01 E	347	170	43 40	178 52 W	438
115 11	45 50	179 01 E	509	172	43 39	178 52 W	468
116	43 36	179 01 F	356	173	43 35	178 45 W	466
117	43 38	179 01 E	369	174	43 32	178 38 W	431
118	43 40	179 01 E	329	175	43 37	178 38 W	438
119	43 42	178 48 E	400	176	43 47	170 30 W	449
120	43 34	179 20 W	417	177	43 51	179 79 W	464
121	43 36	179 20 W	395	178	44 00	179 39 W	459
122	43 38	179 20 W	387	179	44 01	179 79 W	430
123	43 42	179 20 W	380	180	44 02	170 30 W	438
124	32 47	179 20 W	380	181	44 06	178 78 W	440
125	43 49	179 20 W	347	182	44 07	178 32 W	404
126	4.3 54	179 20 W	309	183	44 01	178 32 W	440
127	43 58	179 20 W	248	184	43 54	178 32 W	400
128	44 00	179 20 W	318	185	43 48	179 32 W	400
129	44 04	179 20 W	318	186	43 42	178 32 W	449
130	44 08	179 20 W	402	187	43 38	178 32 W	430
131	44 11	179 13 W	402	188	43 34	178 32 W	420
132	44 07	179 13 W		189	43 34	170 32 4	420
133	44 03	179 13 W	299	190	43 28	170 32 W	420
134	43 59	179 13 W	270	191	43 22	178 32 W	438
135	43 58	179 13 W	219	192	43 27	177 50 W	438
136	43 54	179 13 W	230	193	43 32	177 50 W	438
137	43 50	179 13 W	369	194	45 32	177 50 W	42/
138	43 46	179 13 W	380	195	43 38	177 50 W	387
139	43 42	179 13 W	406	196	43 43	177 50 W	385
140	43 38	179 13 W	424	197	43 48	177 SO W	384
141	43 37	179 06 W	409	198	43 53	177 50 W	438
142	43 39	179 06 W	424	199	43 53	177 57 W	430
143	43 41	179 06 W	417	200	43 48	177 57 W	436
144	43 45	179 06 W	402	201	43 43	177 58 W	382
145	43 50	179 06 W	393	202	43 38	177 58 W	380
146	43 54	179 06 W	340	203	43 33	177 59 W	365
147	43 57	179 05 W	376	204	43 32	177 58 W	376
148	43 58	179 06 W	409	205	43 27	177 57 W	402
149	44 00	179 06 W	380	206	43 25	177 57 W	438
150	44 01	179 06 W	358	207	43 14	178 03 W	420
151	44 02	179 06 W	256	208	43 16	178 03 W	409
152	44 05	179 06 W	303	209	43 23	178 03 W	365
153	44 10	179 06 W	438	210	43 35	178 03 W	384
154	44 06	179 OO W	420	211	43 39	178 03 W	384
155	44 02	179 OO W	336	212	43 44	178 03 W	380
156	43 58	179 OO W	318	213	43 49	178 03 W	424
157	43 54	178 59 W	398	214	43 55	178 04 W	453
158	43 48	178 57 W	424	215	43 55	178 17 W	421
159	43 44	178 56 W	417	216	43 50	178 17 W	402
160	43 39	178 56 W	395	217	43 45	178 17 W	380
161	43 52	178 45 W	438	218	43 45	178 17 W	380
162	43 59	178 46 W	438	219	43 35	178 17 W	411
163	44 03	178 46 W	431	220	43 25	178 17 W	420
104	44 06	178 52 W	409	221	43 20	178 17 #	424
165	44 02	178 52 W	395	222	43 15	170 17 1	409
10/	43 52	179 52 W	420				

25

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

1

(1) (4)

APPENDIX III

Listing of available P_2O_5 analyses on phosphorite nodules from Chatham Rise.

1 Monsoon 73 Whole module 25.4 Global Marine + 2 Monsoon 73 Mole module 19.2 Global Marine + 3 Monsoon 73 Mole module 18.1 Global Marine + 4 Discovery II - 2733 Analyses of six nodules 21.8 Reed and Hornibre (1959) 5 C46 Average of three analyses on various 2733 This work 19.9 6 C46A-D Mole nodule 19.9 This work 7 C46B-B Mole nodule 19.2 This work 9 C56A Average of three size fraction analyses 22.9 This work 10 C64A Mole nodule 19.2 This work 11 C66A Average of three size fraction analyses 21.7 This work 12 C66A Mole nodule 19.2 This work 13 C69A Average of three size fraction analyses 21.4 This work 14 C337 Buit sample 16.5 Global Marine * 15 C39 Buit sample 16.5 Global Marine * 16 C445 19.5 Buit sample 16.9 Global Marine * 17 C146 Buit sample 20.4 Glob	No.	Station	Analysed Portion	\$P205	Reference
2Monsoon 74Mole nodule19.2Global Marine +3Monsoon 75Mole nodule18.1Global Marine +4Discovery II -Analyses of six nodules18.1Global Marine +7C46Average of three analyses on various portions of the same nodule17.2This work6C46A-DMole nodule17.7This work7C46B-BMole nodule19.9This work8C56Average of three size fraction analyses22.9This work10C56AMole nodule20.2This work11C66Average of three size fraction analyses (see Table 3)21.7This work12C68AMole nodule18.9This work13C69AAverage of three size fraction analyses interior portions of the same nodule11.4This work14C337Bulk sample16.5Global Marine *15CX30Bulk sample18.5Global Marine *16CX4519.5Bulk sample16.9Global Marine *17C146Bulk sample21.21This work18CX47Bulk sample19.2This work20CX55Average of three size fraction analyses (See Table 3)20.0This work21CX64Bulk sample21.21Global Marine *22CX54Bulk sample21.21Global Marine *23CX57Bulk sample21.21G	1	Monsoon 73	Whole nodule	25.4	Global Marine +
3Monson 75Mole nodule18.1Global Marine +4Discovery 11 - 2733Analyses of six nodules21.8Reed and Horniber (1959)5C46Average of three analyses on various protins of the same nodule17.2This work6C46A-DMole nodule17.7This work7C46B-BHole nodule17.9This work8C56Average of three size fraction analyses22.9This work9C56AMole nodule19.2This work10C64AMole nodule19.2This work11C66Average of three size fraction analyses (see Table 3)21.7This work12C68AMole nodule11.4This work13C69AAverage of three size fraction analyses (see Table 3)21.7This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample19.5Burrane *16CX47Bulk sample16.9Global Marine *17CX46Bulk sample21.2C0.0Global Marine *18CX57Bulk sample21.2C0.0Global Marine *19CX54Bulk sample21.2C0.0Global Marine *20CX55Bulk sample21.2C0.0Global Marine *21CX56Bulk sample21.2C0.0Global Marine *22CX57Bulk sample21.2C0.0Global Marine *	2	Monsoon 74	Whole nodule	19.2	Global Marine +
4 Discovery 11 - 2733 Analyses of six nodules 21.8 Reed and hornbord (1959) 5 C46 Average of three analyses on various portions of the same nodule 17.2 This work 6 C46A-D Whole nodule 19.9 This work 7 C46B-B Whole nodule 19.2 This work 9 C56A Average of three size fraction analyses 22.9 This work 10 C64A Whole nodule 20.2 This work 11 C66A Mwore of the same nodule 19.2 This work 12 C66A Mwore of the same nodule 21.4 This work 13 C69A Whole nodule 21.4 This work 14 CX37 Bulk sample 16.5 Global Harine * 15 CX39 Bulk sample 16.5 Global Harine * 16 CX45 Ins work Global Harine * 17 CX46 Bulk sample 20.3 Global Harine * 18 CX47 Bulk sample 21.4 Global Harine * 19 CX55 Bulk sample 21.4 Global Harine * 20 CX55 Bulk sample 21.4 Global Harine * 21 C	3	Monsoon 75	Whole nodule	18.1	Global Marine +
5C46Average of three analyses on various17.2This work6C46A-DMhole nodule17.7This work7C46B-BWhole nodule19.0This work8C56AAverage of three size fraction analyses22.9This work9C56AMhole nodule20.2This work10C64AMhole nodule20.2This work11C66Average of three size fraction analyses21.7This work12C68AMhole nodule21.7This work13C66AAverage of two analyses on exterior and interior portions of the same nodule16.5Clobal Marine *14CX37Bulk sample21.7Global Marine *15CX39Bulk sample21.7Global Marine *16CX45Interior portions of the same nodule21.7Global Marine *17CX46Bulk sample21.6Global Marine *18CX47Bulk sample20.8Global Marine *19CX54Bulk sample21.2Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.3Global Marine *23CX57Bulk sample21.4Global Marine *24CX61Bulk sample21.3Global Marine *25CK61ABulk sample20.7Global Marine *26CX62Bulk sample20.7Global Marine *27 <t< td=""><td>4</td><td>Discovery II - 2733</td><td>Analyses of six nodules</td><td>21.8</td><td>Reed and Hornibrook (1959)</td></t<>	4	Discovery II - 2733	Analyses of six nodules	21.8	Reed and Hornibrook (1959)
6C46A-DWhole nodule17.7This work7C46B-BWhole nodule19.9This work8C56Average of three size fraction analyses22.9This work9C56AWhole nodule19.2This work10C64AWhole nodule19.2This work11C66Average of three size fraction analyses (see Table 3)21.7This work12C68AWhole nodule18.9This work13C69AAverage of two analyses on exterior and interior pertions of the same nodule21.4This work14CX37Bulk sample21.7Global Marine *15CX39Bulk sample21.7Global Marine *16CX45Bulk sample21.6Global Marine *17CX54Bulk sample20.5Global Marine *19CX55Average of the size fraction analyses (see Table 3)20.5Global Marine *20CX55Average of the size fraction analyses (see Table 3)20.5Global Marine *21CX55Bulk sample21.2Global Marine *22CX57Bulk sample21.2Global Marine *23CX59Mole nodule19.9This work24CX61Bulk sample21.6Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work24CX51Bulk sample21.6Global Marine * <td>5</td> <td>C46</td> <td>Average of three analyses on various portions of the same nodule</td> <td>17.2</td> <td>This work</td>	5	C46	Average of three analyses on various portions of the same nodule	17.2	This work
7C468-BMhole module19.9This work8C56Average of three size fraction analyses22.9This work9C56AWhole module19.2This work10C64AWhole module20.2This work11C56Average of three size fraction analyses (see Table 3)21.7This work12C68AWhole module18.9This work13C69AAverage of three size fraction analyses (see Table 3)21.7This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Burnet (1974)17CX46Bulk sample18.5Global Marine *18CX47Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (see Table 3)20.0Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.2Global Marine *23CX59AWhole nodule19.9This work24CX61Bulk sample21.3Global Marine *25CX64Bulk sample21.3Global Marine *26CX62Bulk sample21.8Global Marine *27CX56Bulk sample21.8Global Marine *28CX61Average of two analyses on exterior and interior portions of the same nodule17.8Glob	6	C46A-D	Whole module	17.7	This work
8C56Average of three size fraction analyses22.9This work9C56AWhole nodule19.2This work11C66Average of three size fraction analyses (see Table 3)21.7This work12C68AWhole nodule18.9This work13C69AAverage of two analyses on exterior and interior portions of the same nodule11.4This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample18.5Global Marine *16CX4518.5Global Marine *17CX46Bulk sample16.9Global Marine *18CX47Bulk sample21.2Global Marine *19CX54Bulk sample21.2Global Marine *20CX55Average of three size fraction analyses (see Table 3)20.820.3Global Marine *21CX56Bulk sample21.2Global Marine *11.4Global Marine *22CX57Bulk sample21.2Global Marine *11.6Global Marine *23CX59AMole nodule19.9This work24CX61Bulk sample21.3Global Marine *25CK61AAverage of two analyses on exterior and interior portions of the same nodule10.9This work26CX62Bulk sample21.9Global Marine *27CK65Bulk sample21.9Global Marine *28CX66Bulk sample<	7	C46B-B	Whole nodule	19.9	This work
9C56AWhole nodule19.2This work10C64AWhole nodule20.2This11C66Average of three size fraction analyses21.7This work12C66AWhole nodule18.9This work13C69AAverage of two analyses on exterior and interior portions of the same nodule21.4This work14CX37Bulk sample21.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Burnett (1974)17CX46Bulk sample20.3Global Marine *18CX47Bulk sample20.8Global Marine *19CX54Bulk sample21.2This work20CX55Average of three size fraction amalyses20.8Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.2Global Marine *23CX57Bulk sample21.9Global Marine *24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule19.9This work26CX62Bulk sample21.9Global Marine *27CX65Bulk sample21.9Global Marine *28CX61Bulk sample21.9Global Marine *29CX65Bulk sample21.9Global Marine *29	8	C56	Average of three size fraction analyses	22.9	This work
10C64AMole nodule20.2This work11C66Average of three size fraction analyses (see Table 3)21.7This work12C68AMole nodule18.9This work13C69AAverage of two analyses on exterior and interior portions of the same nodule21.4This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample16.5Global Marine *16CX4518.5Global Marine *17CX46Bulk sample16.9Global Marine *18CX47Bulk sample20.3Global Marine *20CX54Bulk sample21.220.0This work21CX56Bulk sample21.2Clobal Marine *22CX57Bulk sample21.2Global Marine *23CX59AMole nodule21.3Global Marine *24CX61Bulk sample21.3Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.3Global Marine *28CX66Bulk sample21.9Global Marine *29CX61Bulk sample21.8Global Marine *29CX65Bulk sample21.9Global Marine *29CX65Bulk sample21.6Global Marine *<	9	C56A	Whole nodule	19.2	This work
11C66Average of three size fraction analyses (See Table 3)21.7This work12C66AMhole nodule18.9This work13C69AAverage of two analyses on exterior and interior portions of the same nodule21.4This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Burnett (1974)17CX46Bulk sample16.9Global Marine *18CX47Bulk sample20.3Global Marine *19CX54Bulk sample21.2Clobal Marine *20CX54Bulk sample21.2Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.3Global Marine *23CX57Bulk sample19.9This work24CX61Average of two analyses on exterior and interior portions of the same nodule16.5This work25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work25CX61ABulk sample21.9Global Marine *26CX62Bulk sample20.0Global Marine *27CX65Bulk sample20.0Global Marine *28CX61Bulk sample21.9Global Marine *29CX61Bulk sample21.9Global Marine *29CX65Bulk sa	10	C64A	Whole nodule	20.2	This work
12C68AWhole nodule18.9This work13C69AAverage of two analyses on exterior and interior portions of the same nodule21.4This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Burnett (1974)17CX46Bulk sample16.9Global Marine *18CX47Bulk sample20.8Global Marine *19CX54Bulk sample21.2Clobal Marine *20CX55Average of three size fraction analyses (See Table 3)20.8Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.4Global Marine *23CX59AWhole nodule19.9This work24CX61Bulk sample17.8Global Marine *25CX62Bulk sample21.3Global Marine *26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.3Global Marine *28CX66Bulk sample21.4Global Marine *29CX67Bulk sample21.4Global Marine *29CX67Bulk sample21.4Global Marine *29CX61Bulk sample21.6Global Marine *20CX65Bulk sample21.6Global Marine *21Global Marine *21.6Global Marin	11	C66	Average of three size fraction analyses (See Table 3)	21.7	This work
13C69AAverage of two analyses on exterior and interior portions of the same nodule21.4This work14CX37Bulk sample16.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Eurnett (1974)17CX46Bulk sample18.5Global Marine *18CX47Bulk sample20.3Global Marine *19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (see Table 3)20.8Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample21.4Global Marine *23CX56Bulk sample21.3Global Marine *24CX61Bulk sample19.9This work25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.4Global Marine *28CX66Bulk sample21.9Global Marine *29CX67Bulk sample21.9Global Marine *21CX65Bulk sample21.9Global Marine *22CX61Bulk sample21.9Global Marine *23CX64Bulk sample21.9Global Marine *24CX61Bulk sample21.9Global Marine *<	12	C68A	Whole nodule	18.9	This work
14CX37Bulk sample16.5Global Marine *15CX39Bulk sample21.7Global Marine *16CX4519.5Euraret (1974)17CX46Bulk sample18.5Global Marine *18CX47Bulk sample16.9Global Marine *19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (see Table 3)20.820.055Bulk sample21.26lobal Marine *21CX56Bulk sample21.26lobal Marine *22CX57Bulk sample21.26lobal Marine *23CX59AMole nodule19.9This work24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.8Global Marine *28CX66Bulk sample20.7Global Marine *29CX67Bulk sample24.9Global Marine *31CX71Bulk sample20.0Global Marine *32CX73Bulk sample20.0Global Marine *33CX77Bulk sample20.0Global Marine *34CX94Bulk sample20.0Global Marine *35CX91Mole nodule21.5This work <tr< td=""><td>13</td><td>C69A</td><td>Average of two analyses on exterior and interior portions of the same nodule</td><td>21.4</td><td>This work</td></tr<>	13	C69A	Average of two analyses on exterior and interior portions of the same nodule	21.4	This work
15CX39Bulk sample21.7Global Marine *16CX4519.5Burnett (1974)17CX46Bulk sample18.5Global Marine *18CX47Bulk sample20.3Global Marine *19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (See Table 3)20.8This work21CX56Bulk sample21.220.0Global Marine *22CX57Bulk sample21.23Global Marine *23CX59AWhole nodule19.9This work24CX61Bulk sample19.9This work25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.8Global Marine *28CX66Bulk sample21.8Global Marine *29CX57Bulk sample21.9Global Marine *29CX57Bulk sample21.9Global Marine *30CX69Bulk sample21.0Global Marine *31CX71Bulk sample21.0Global Marine *32CX73Bulk sample21.0Global Marine *33CX77Bulk sample21.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Mhole nodule <t< td=""><td>14</td><td>CX37</td><td>Bulk sample</td><td>16.5</td><td>Global Marine *</td></t<>	14	CX37	Bulk sample	16.5	Global Marine *
16CX4519.5Burnett (1974)17CX46Bulk sample18.5Global Marine *18CX47Bulk sample16.9Global Marine *19CX54Bulk sample20.8Global Marine *20CX55Average of three size fraction analyses (see Table 3)20.0This work21CX56Bulk sample21.2Global Marine *22CX57Bulk sample23.3Global Marine *23CX59AMhole nodule19.9This work24CX61Bulk sample19.4Rouse (1969)25CX61ABulk sample21.3Global Marine *26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.3Global Marine *28CX66Bulk sample21.9Global Marine *29CX67Bulk sample21.9Global Marine *29CX67Bulk sample21.9Global Marine *20CX77Bulk sample21.0Global Marine *21CX73Bulk sample20.0Global Marine *22CX73Bulk sample20.0Global Marine *23CX69Bulk sample20.0Global Marine *24CX65Bulk sample20.0Global Marine *25CX67Bulk sample21.9Global Marine *26CX62Bulk sample20.0Global Marine *27CX65Bulk sample<	15	CX39	Bulk sample	21.7	Global Marine *
17CX46Bulk sample18.5Global Marine *18CX47Bulk sample16.9Global Marine *19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (See Table 3)20.8This work21CX56Bulk sample21.2Global Marine *22CX57Bulk sample23.3Global Marine *23CX59ABulk sample23.3Global Marine *24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample20.7Global Marine *28CX66Bulk sample20.7Global Marine *29CX67Bulk sample21.8Global Marine *20CX69Bulk sample20.0Global Marine *21CX73Bulk sample20.0Global Marine *23CX66Bulk sample20.0Global Marine *24CX61Bulk sample20.0Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample20.7Global Marine *27CX65Bulk sample20.0Global Marine *28CX66Bulk sample20.0Glo	16	CX45		19.5	Eurnett (1974)
18CX47Bulk sample16.9Global Marine *19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (see table 3)20.820.0This work21CX56Bulk sample21.2Global Marine *21CX56Bulk sample21.2Global Marine *22CX57Bulk sample23.3Global Marine *23CX59AWhole nodule19.9This work5919.9This work19.9This work24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample21.8Global Marine *28CX66Bulk sample21.9Global Marine *29CX67Bulk sample21.9Global Marine *20CX67Bulk sample22.4Global Marine *21CX73Bulk sample20.0Global Marine *22CX73Bulk sample20.0Global Marine *23CX77Bulk sample20.0Global Marine *24CX79Bulk sample20.0Global Marine *25CX65Bulk sample20.0Global Marine *26CX67Bulk sample20.0Global Marine *27CX66Bulk sampl	17	CX46	Bulk sample	18.5	Global Marine *
19CX54Bulk sample20.3Global Marine *20CX55Average of three size fraction analyses (See Table 3)20.8This work21CX56Bulk sample21.2 20.0 Global Marine *21CX56Bulk sample21.2 21.4 Global Marine *22CX57Bulk sample21.4Global Marine *23CX59AMole nodule19.9This work5919t< Rouse (1969)	18	CX47	Bulk sample	16.9	Global Marine *
20CX55Average of three size fraction analyses (see Table 3)This work55Bulk sample21.2 $\frac{1}{2}$ C0.0Global Marine *21CX56Bulk sample21.2 $\frac{1}{2}$ Global Marine *22CX57Bulk sample23.3Global Marine *23CX59AMole nodule19.9This work5919 tRouse (1969)17.8Global Marine *24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample20.7Global Marine *27CX65Bulk sample21.8Global Marine *28CX66Bulk sample21.9Global Marine *30CX69Bulk sample20.0Global Marine *31CX71Bulk sample21.0Global Marine *32CX73Bulk sample20.0)Global Marine *33CX77Bulk sample20.0)Global Marine *34CX93Bulk sample20.0)Global Marine *35CX91Mnole nodule21.5This work36CX04AMole nodule21.5Global Marine *	19	CX54	Bulk sample	20.3	Global Marine *
55Bulk sample 21.2 21.0 Global Marine *21CX56Bulk sample 21.2 21.4 Global Marine *22CX57Bulk sample 23.3 Global Marine *23CX99AWhole nodule19.9This work5919the Rouse (1969)24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample20.7Global Marine *27CX65Bulk sample21.8Global Marine *28CX66Bulk sample21.9Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample22.4Global Marine *31CX71Bulk sample20.0Global Marine *32CX73Bulk sample20.0Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Clobal Marine *35CX91Whole nodule21.5This work36CX04AWhole nodule21.5Global Marine *	20	CX55	Average of three size fraction analyses (See Table 3) 20.8)	20.0	This work
21CX56Bulk sample21.4Global Marine *22CX57Bulk sample23.3Global Marine *23CX59AMhole nodule19.9This work5919 *Rouse (1969)24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample20.7Global Marine *28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample20.0Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Dulk sample20.0Global Marine *35CX91Mhole nodule21.5This work36CX104AMhole nodule21.3Global Marine *		55	Bulk sample 21.2	20.0	Global Marine *
22 CX57 Bulk sample 23.3 Global Marine * 23 CX59A Whole nodule 19.9 This work 24 CX61 Bulk sample 17.8 Global Marine * 25 CX61A Average of two analyses on exterior and interior portions of the same nodule 16.5 This work 26 CX62 Bulk sample 21.3 Global Marine * 27 CX65 Bulk sample 20.7 Global Marine * 28 CX66 Bulk sample 21.8 Global Marine * 29 CX65 Bulk sample 21.9 Global Marine * 29 CX66 Bulk sample 20.4 Global Marine * 30 CX69 Bulk sample 20.4 Global Marine * 31 CX71 Bulk sample 20.0 Global Marine * 32 CX77 Bulk sample 20.0 Global Marine * 33 CX79 Bulk sample 20.0 Global Marine * 34 CX79 Bulk sample 20.0 Global Marine * 35 CX91 Whole nodule 21.	21	CX56	Bulk sample	21.4	Global Marine *
23 CX 393 A Whole nodule 19.9 This work 59 19 + Rouse (1969) 24 CX 61 Bulk sample 17.8 Global Marine * 25 CX 61A Average of two analyses on exterior and interior portions of the same nodule 16.5 This work 26 CX 62 Bulk sample 21.3 Global Marine * 27 CX 65 Bulk sample 20.7 Global Marine * 28 CX 66 Bulk sample 21.8 Global Marine * 29 CX 65 Bulk sample 21.9 Global Marine * 29 CX 67 Bulk sample 20.4 Global Marine * 30 CX 69 Bulk sample 20.4 Global Marine * 31 CX 71 Bulk sample 21.0 Global Marine * 32 CX 73 Bulk sample 20.0 Global Marine * 33 CX 77 Bulk sample 20.0 Global Marine * 34 CX 79 Bulk sample 20.0 Global Marine * 35 CX 91 Whole nodule 20.5 Global Marine * </td <td>22</td> <td>CX57</td> <td>Bulk sample</td> <td>23.3</td> <td>Global Marine *</td>	22	CX57	Bulk sample	23.3	Global Marine *
5919 tRouse (1969)24CX61Bulk sample17.8Global Marine*25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine*27CX65Bulk sample20.7Global Marine*28CX66Bulk sample21.8Global Marine*29CX67Bulk sample21.9Global Marine*30CX69Bulk sample20.4Global Marine*31CX71Bulk sample20.0Global Marine*32CX73Bulk sample20.0Global Marine*33CX77Bulk sample20.0Global Marine*34CX79Bulk sample20.0Global Marine*35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine*37CX94Bulk sample20.2This work38CX104AWhole nodule21.3Global Marine*	23	CX 39 A	Whole nodule	19.9	This work
24CX61Bulk sample17.8Global Marine *25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample20.7Global Marine *28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample24.9Global Marine *32CX73Bulk sample20.0Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work		59		19 +	Rouse (1969)
25CX61AAverage of two analyses on exterior and interior portions of the same nodule16.5This work26CX62Bulk sample21.3Global Marine *27CX65Bulk sample20.7Global Marine *28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample24.9Global Marine *32CX73Bulk sample22.4Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample20.5Global Marine *38CX104AWhole nodule21.3Global Marine *	24	CX61	Bulk sample	17.8	Global Marine *
26CX62Bulk sample21.3Global Marine *27CX65Bulk sample20.7Global Marine *28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample22.4Global Marine *32CX73Bulk sample21.0Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *38CX104AWhole nodule21.3Global Marine *	25	CX61A	Average of two analyses on exterior and interior portions of the same nodule	16.5	This work
27CX65Bulk sample20.7Global Marine *28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample24.9Global Marine *32CX73Bulk sample22.4Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample20.2This work38CX104AWhole nodule20.2This work	26	CX62	Bulk sample	21.3	Global Marine *
28CX66Bulk sample21.8Global Marine *29CX67Bulk sample21.9Global Marine *30CX69Bulk sample20.4Global Marine *31CX71Bulk sample24.9Global Marine *32CX73Bulk sample22.4Global Marine *33CX77Bulk sample20.0Global Marine *34CX79Bulk sample20.0Global Marine *25CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample20.2This work38CX104AWhole nodule20.2This work	27	CX65	Bulk sample	20.7	Global Marine *
29CX 67Bulk sample21.9Global Marine *30CX 69Bulk sample20.4Global Marine *31CX 71Bulk sample24.9Global Marine *32CX 73Bulk sample22.4Global Marine *33CX 77Bulk sample21.0Global Marine *34CX 79Bulk sample20.0Global Marine *35CX 91Whole rodule20.420.2Burnett (1974)35CX 93Bulk sample20.5Global Marine *37CX 94Bulk sample20.5Global Marine *38CX 104AWhole rodule20.2This work	28	CX66	Bulk sample	21.8	Global Marine *
30CX69Bulk sample20.4Global Marine *31CX71Bulk sample24.9Global Marine *32CX73Bulk sample22.4Global Marine *33CX77Bulk sample21.0Global Marine *34CX79Bulk sample20.0Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample20.5Global Marine *38CX104AWhole nodule20.2This work	29	CX67	Bulk sample	21.9	Global Marine *
31CX71Bulk sample24.9Global Marine *32CX73Bulk sample22.4Global Marine *33CX77Bulk sample21.0Global Marine *34CX79Bulk sample20.0)Global Marine *35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample20.2This work38CX104AWhole nodule21.3Global Marine *	30	CX69	Bulk sample	20.4	Global Marine *
32CX73Bulk sample22.4Global Marine *33CX77Bulk sample21.0Global Marine *34CX79Bulk sample20.0Global Marine *27.920.420.2Burnett (1974)35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule21.2This work	31	CX71	Bulk sample	24.9	Global Marine *
33CX77Bulk sample21.0Global Marine *34CX79Bulk sample20.0Global Marine *CX7920.420.2Burnett (1974)35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work	32	CX73	Bulk sample	22.4	Global Marine *
34CX79Bulk sample20.0) 20.4)Global Marine * Burnett (1974)35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work	33	CX77	Bulk sample	21.0	Global Marine *
CX7920.420.2Burnett (1974)35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work	34	CX79	Bulk sample 20.0)		Global Marine *
35CX91Whole nodule21.5This work36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work		CX79	20.4	20.2	Burnett (1974)
36CX93Bulk sample20.5Global Marine *37CX94Bulk sample21.3Global Marine *38CX104AWhole nodule20.2This work	35	CX91	Whole nodule	21.5	This work
37 CX94 Bulk sample 21.3 Global Marine * 38 CX104A Whole nodule 20.2 This work	36	CX93	Bulk sample	20.5	Global Marine *
38 CX104A Whole nodule 20.2 This work	37	CX94	Bulk sample	21.3	Global Marine *
	38	CX104A	Whole nodule	20.2	This work
39 CX105 Bulk sample 21.5 Global Marine *	39	CX105	Bulk sample	21.5	Global Marine *

CC

No.	Station	Analysed Portion	\$P205	Reference
40	CX106	Bulk sample	23.1	Global Marine *
41	CX109B	Whole nodule	18.8	This work
42	CX114	Bulk sample	20.6	Global Mørine *
43	CX115	Bulk sample	22.4	Global Marine *
44	CX141	Bulk sample	17.6	Global Marine *
45	CX142	+ 3/4 in Bulk sample	17.8	Global Marine *
46	CX159	Bulk sample	22.6	Global Marine *
47	CX178	Bulk sample	24.4	Global Marine *
48	CX183	Bulk sample	23.0	Global Marine *
49	CX188	Bulk sample	20.0	Global Marine *
50	CX196	Bulk sample	20.7	Global Marine *
51	CX203	Bulk sample	16.6	Global Marine *
		Average	20.45	

+

Analysed by Smith-Emery, Los Angeles Analysed by M.H. Buckenham, University of Otago, New Zealand Value not included in average

t

N.Z. OCEANOGRAPHIC INSTITUTE MEMOIRS

Other memoirs in this series include -

- DELL, R.K.; JONES, N.S.; YALDWYN, J.C. 1960: Biological Results of the Chatham Islands 1954 Expedition. Part I.
 Decapoda Brachyura; Cumacea; Decapoda Natantia.
 Mem. N.Z. Oceanogr. Inst. 4.
- FELL, H.B. 1960: Biological Results of the Chatham Islands 1954 Expedition. Part 2. Archibenthal and Littoral Echinoderms. Mem. N.Z. Oceanogr. Inst. 5.
- KNOX, G.A. 1960: Biological Results of the Chatham Islands 1954 Expedition. Part 3. Polychaeta Errantia. Mem. N.Z. Oceanogr. Inst. 6.
- DELL, R.K.; EDMONDS, S.J. 1960: Biological Results of the Chatham Islands 1954 Expedition. Part 4. Marine Mollusca; Sipunculoidea. Mem. N.Z. Oceanogr. Inst. 7.
- BERGQUIST, P.R.; PIKE, R.B.; HURLEY, D.E.; RALPH, P.M. 1961: Biological Results of the Chatham Islands 1954 Expedition. Part 5. Porifera : Demospongiae; Porifera : Keratosa; Crustacea Isopoda : Bopyridae; Crustacea Isopoda : Serolidae; Hydroida. Mem. N.Z. Oceanogr. Inst. 13.
- HEDLEY, R.H.; HURDLE, C.M.; BURDETT, I.D.J. 1965: A Foraminiferal Fauna from the Western Continental Shelf, North Island, New Zealand. *Mem. N.Z. Oceanogr. Inst.* 25.

- NORRIS, R.M. 1964: Sediments of Chatham Rise. Mem. N.Z. Oceanogr. Inst. 26.
- PANTIN, H.M. 1966: Sedimentation in Hawke Bay. Mem. N.Z. Oceanogr. Inst. 28.
- SQUIRES, D.F. 1964: Biological Results of the Chatham Islands 1954 Expedition. Part 6. Scleractinia. Mem. N.Z. Oceanogr. Inst. 29.
- KRAUSE, D.C. 1966: Geology and Geomagnetism of the Bounty Region East of the South Island, New Zealand. Mem. N.Z. Oceanogr. Inst. 30.
- CULLEN, D.J. 1967: The Submarine Geology of Foveaux Strait. Mem. N.Z. Oceanogr. Inst. 33.
- McDOUGALL, J.C.; BRODIE, J.W. 1967: Sediments of the Western Shelf, North Island, New Zealand. Mem. N.Z. Oceanogr. Inst. 40.
- KRAUSE, D.C. 1967: Bathymetry and Geologic Structure of the North-western Tasman Sea - Coral Sea - South Solomon Sea Area of the South-western Pacific Ocean. Mem. N.Z. Oceanogr. Inst. 41.
- PANTIN, H.M. 1972: Internal Structure in Marine Shelf, Slope, and Abyssal Sediments East of New Zealand. Mem. N.Z. Oceanogr. Inst. 60.

28

